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points, using a multiplicative group M, that produces 
a matrix of a particularly nice form. Further, it 
restricts to an asymmetric unit for P3 on the space 
reducing the size of the matrix by 1/9. Furthermore, 
the resulting matrix has the same tensor skew- 
circulant form as the big matrix and so can be used 
to compute the transform using the same efficient 
algorithms as the original transform. 

As we have suggested earlier, the technical details 
in the resulting algorithm will be the subject of 
another paper where the construction of the asym- 
metric unit and all the blocks will be shown. 

Summary 

The finite Fourier transform on N data points is 
simply the evaluation of an N × N matrix times an 
N-vector to produce an N-vector result. The straight- 
forward method of matrix multiplication requires a 
number of operations proportional to N 2. In terms 
of computer programming, the time required to com- 
pute the result, say Ts(N) ,  would quadruple if the 
input size were doubled. We can express this by 
writing Ts (N)  = C N  2 where C is a constant depend- 
ing, amongst many things, primarily on the machine 
on which the program is run and the coding of the 
program. Typical values of C are in the range of 40 ~s 
for the VAX-11/785 to 400 ns for the CRAY X-MP. 
So even for moderate-size problems, say N = 100 to 
10 000, the range of observed times is significant; 
measured in seconds to hours. 

The remarkable aspect of the Fourier transform is 
that there exist 'fast' or 'efficient' methods which do 
the same evaluation in a time proportional to 

N log N, or T e ( N )  = K N  log N where K is another 
constant, approximately the same as C. This means 
that using 'fast' methods reduces time costs for real 
problems by several orders of magnitude. 

For problems in crystallography, the finite Fourier 
transform is run many times for the same space group 
on the same number of points. This problem has led 
to efforts to use the symmetry of the data to reduce 
N by the order of the group to save time and space 
in calculating the result. For groups built from P2 
Ten Eyck (1973) was able to achieve both. Bantz & 
Zwick (1974) were able to use symmetry to reduce 
memory requirements for nearly all space groups. 

The advantage of the approach presented in this 
paper is that we can use symmetry to reduce the data 
and still use an efficient N log N evaluation method. 
Although much work needs to be done to develop 
algorithms for all the space groups, the general 
method presented here shows that such algorithms 
exist. In principle, each group and each grid size leads 
to a different program. However, the methods presen- 
ted in this paper enable us to generate these programs 
automatically. Moreover, by the very nature of the 
algorithms developed they can be naturally parti- 
tioned to calculate structures larger than available 
high-speed memory. 

References 
BANTZ, D. A. & ZWICK, M. (1974). Acta Cryst. A30, 257-260. 
International Tables for Crystallography (1983). Vol. A, pp. 94, 480. 

Dordrecht: Reidel. (Present distributor Kluwer Academic Pub- 
lishers, Dordrecht.) 

RADER, C. M. (1968). Proc. IEEE, 5, 1107-1108. 
TEN EYCK, L. F. (1973). Acta Cryst. A29, 183-191. 
WINOGRAD, S. (1978). Math. Comput. 32, 175-199. 

Acta Cryst. (1988). A44, 478-481 

Increasing the Size of Search Fragments for use in Patterson Method 
Calculat ions-  the Partial-Fragment Rotation Function 

BY C. C. WILSON 

Neutron Division, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX 11 OQX, England 

(Received 27 October 1987; accepted 15 February 1988) 

Abstract 

A method is described of expanding a molecular 
fragment for use in Patterson search procedures by 
the rotation of part of a model about a bond direction 
with respect to a fixed fragment, allowing the removal 
of an important degree of freedom in the model. The 
function has been incorporated into a computer pro- 
gram and it has been found possible to orient very 
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small partial fragments in this way. The consequent 
expansion of a search model should assist in struc- 
tural solution. 

Introduction 

The basis of Patterson search techniques lies in the 
provision of a reasonable model fragment for com- 
parison with the observed data. In the reciprocal- 
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space calculations performed in the methods of Tollin 
& Cochran (1964); Tollin (1976); Wilson & Tollin 
(1985), the rotation function is calculated using the 
expression 

O"(01,  02,  03) 

= ~ F~ 2[~ (cos 27rh'r~)2+~ (s ini  27rh'ri)2] (1) 

where the ]F~. 2 are the sharpened squared structure 
factors, the r~ are the coordinates of the model, 
(01, 02, 03) are the Eulerian angles of the rotation 
(Rossmann & Blow, 1962) and the summation is 
normally over the Nrer largest [F~ 2, with Nref~ 300 
in most cases. This function is closely related to the 
sum over all reciprocal-lattice points of the product 
of the observed I = with the model molecular trans- 
form. The first term in (1) can be regarded as the 
Fourier transform of the observed Patterson function, 
P(r), FT [P(r)obs ] = IFI 2, and the second term as the 
Fourier transform of the calculated Patterson {FT 
[P(r)calc] = FT[R(r) * p ( - r ) ]  = ~j (fj cos27rh.rj) 2 
+Yu (fJ sin 27rh.rj)2}, excluding the atomic scattering 
factors, where * represents convolution. The summa- 
tion (1) can therefore be regarded as a Patterson 
search, but without explicit evaluation of the 
Patterson function at any point, instead carrying out 
all calculations in reciprocal space. 

It is obvious that in order to improve the reliability 
of the rotation function or(01, 02, 03), one must make 
both terms in the summation as reliable as possible. 
The F~ 2 are made reliable by good experimental and 
sensible sharpening procedures and the model trans- 
form is made most reliable by inclusion of as much 
correct stereochemical information as possible. This 
argument holds also for subsequent stages in the 
Patterson method calculations such as the Q (transla- 
tion) functions (2) (Tollin & Cochran, 1964; Tollin, 
1966), 

Q(Ro)=~] F~ 2 ~ cos27rh.[ r~+Ro-T(r j ,+Ro)]  
h j , j ' = l  

(2) 
where T(r) is a symmetry transformation, in which 
again the provision of the best model for the second 
term would improve the reliability of the calculation. 

The purpose of this paper is to indicate how the 
second of these requirements can be met more satis- 
factorily and provide better models for rotation and 
translation searches using Patterson methods. 

The partial-fragment rotation function 

In many crystal structures the situation can arise 
whereby two (or more) groups whose stereochemis- 
tries are reasonably well known are linked via an 
undetermined degree of freedom, for example 
through a bond, the torsion angle of the two groups 

relative to one another about that bond being 
unknown. Two typical examples of this are in the 
biphenyl structures and in nucleoside structures 
where a planar base is connected to a puckered sugar 
group through the glycosidic N-CI'  bond, but many 
more such structures exist. 

If the orientation of one of these groups can be 
found, then if it were possible to eliminate the degree 
of freedom about the linking bond, the model for use 
in Patterson search calculations could then be exten- 
ded to encompass both groups. 

Essentially this amounts to writing the rotation 
function (1) in the form 

~r(01, 02, 03, 0p) 

=~ F~, 2 (cos2~h.r i )2+ Y. (sin2~-h.ri) 2 
i 1 i=l  

+ ~  IF~,I2[ ~ (cos 27rh.rj) 2 
h t . j =  nl 

] + 2 (sin 2~h.rj)  2 (3) 
j = n  1 

where the nl atoms i [ri =ri(0~, 02, 03)] are those in 
the group whose orientation is known and fixed, and 
the (n2-n~) atoms j [rj = rj(01,02, 03, 0p)] are those 
in the partial fragment whose orientation with respect 
to the n~ fixed atoms is unknown. 

Thus the (n2- nl) atomsj  have an additional partial 
rotation angle (representing the extra degree of free- 
dom) 0p about the relevant bond direction which is 
applied before imposition of the standard Eulerian 
rotation (01, 02, 03) leading to calculation of the rota- 
tion function. The purpose of the partial-fragment 
rotation function (PFRF) would then be to find the 
value of Op by which the (n2-n~) atoms j should be 
rotated to give a maximum value in the modified 
rotation function (3). 

While this procedure is very straightforward there 
is a possible problem related to the fact that even in 
the standard rotation function (1) the significant 
features pertaining to orientational information sit on 
a very high background value, and this situation is 
exacerbated by the inclusion of the (n2 -n l )  extra 
atoms in the search model. It is obviously of some 
interest to discover for how few additional atoms the 
PFRF will produce significant and correct structural 
information. 

The PFRF calculation (3) was incorporated into 
the Patterson methods program PATMET (Wilson 
& Tollin, 1986), being implemented via extra coordi- 
nate transformations sitting on top of the existing 
rotation-function calculations. Clashes between the 
rotating and the fixed fragment can eliminate possible 
conformational regions from consideration and this 
is incorporated in the code. The results of several 
tests of the procedure are outlined below. 
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Location of the orientation of a planar group is 
standard procedure in P A T M E T  calculations (Tollin 
& Cochran, 1964; Wilson & Tollin, 1985), and a 
facility is provided whereby a published set of coor- 
dinates can be supplied which are then transformed 
and used in the search procedure. The code can deal 
with any combination of oblique or orthogonal coor- 
dinate systems in the structure and the model. Pub- 
lished structural information can also be used for the 
partial fragment on which the Op operation is to be 
performed. 

Tests of the function 

Since the work outlined here was prompted by the 
particular problem of orienting puckered ribose and 
deoxyribose sugar groups relative to planar bases in 
nucleosides, a selection of these structures was used 
to test the PFRF. 

Table 1 summarizes the results of the tests and Fig. 
1 shows a typical plot of the partial-fragment rotation 
function for the example of 2',3',5'-tri-O-acetyl- 
guanosine (TAG) using 2',3',5'-tri-O-acetyladenosine 
(TAA) as model. Inset in Fig. 1 are pictures of the 
molecules showing the rotation being performed in 
this calculation. The peak at -128 ° is close to the 
expected solution, which for these two structures 
should give a value equal to the difference in the X 
(glycosyl) torsion angles, which is 134 °. 

The first group of calculations was used to verify 
the potential applicability of the procedure; these 
were tests using as a model parts of the correct struc- 
ture of each molecule. All results from these tests 
were fairly hopeful, although the problems inherent 
in rotation-function calculations using small frag- 
ments can be seen in the fact that even in these 
'idealized' cases the solutions are not always unam- 
biguous. The quantities p~ and p2, representing the 
scattering power of the partial fragment with respect 
to the asymmetric unit and the unit-cell contents 
respectively, give some indication of the relative sizes 
of the fragments whose orientations are being deter- 
mined. 

In the second group more realistic tests of the 
procedure were performed, using published related 
structures or in one case an ideal-geometry-generated 
structure as models. In all cases to date the correct 
0p value has been indicated, mostly as the best solu- 
tion in the PFRF, or failing this as one of the next 
few highest. 

As can be seen from Table 1, the models being 
oriented in the PFRF calculations tends to be rather 
small and so these results are certainly impressive. 
Indeed in the extreme case where just a C-O fragment 
was being oriented relative to a C 9 N 5 0 2  fixed group 
within a C16N507 structure, the high ranking of the 
correctly oriented solution is quite remarkable. 
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Fig. 1. Plot of  the partial-fragment rotation function for TAG using TAA as model, showing the peak at 128 °. Inset left: view of the 
molecular structure of TAA. Inset right: view of the molecular structure of TAG. The partial rotation was performed about the 
N(9)-C(I ' )  bond, in this case using the blocked atoms [C(2'), O(2'), C(3'), O(3'), C(4'), C(5'), 0(4')]  as partial fragment. The X angle 
in these structures is defined as the C(4)-N(9)-C(1 ' ) -O(4 ' )  torsion angle (see text). 
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Table 1. Summary of tests of the partial-fragment rotation function 

Structure 
TAG* 

(C16N508) 
TAA* 

(CI6N507) 

MAT s 
(CI2N206) 

TAU ~ 
(C15N209) 

TAG 
(CI6N508) 

TAA 
(C16N507) 

MAT 
(C12N206) 

Rotating 
Fixed partial Partial fragment 

Model fragment fragment p2 p2 

TAG C6N50 C403 0"25 0" 12 
TAG C6 NsO C30 0.13 0.07 
TAA C6N 5 C907 0"59 0" 15 
TAA C6N 5 C30 0" 14 0"03 
TAA C6N5 C403 0"26 0"06 
TAA C6N 5 CO 0"07 0"02 
MAT C6N202 C30 0-19 0"05 

IDU ~ Cs N202 C402 0.23 0"06 
4TU** CsN202 C404 0.32 0"08 
TAA C6 N5 C404 0.29 0" 14 
TAA C6N 5 C403 0-25 0" 12 

COORD tt C6N5 C30 0.14 0"03 

AT** C6N202 C4Os 0"36 0"09 
AT C6N202 C30 0" 19 0"05 

* 2',Y,5'-Tri-O-acetylguanosine: Wilson, Low & Tollin (1985). 
* 2',3',5',-Tri-O-acetyladenosine: Wilson, Tollin & Howie (1986). 
* Y-O-Acetylthymidine: Eccleston, Wilson & Howie (1988). 
§ 2',Y,5'-Tri-O-acetyluridine: Low & Wilson (1984). 

5-Iodo-2'-deoxyuridine: Camerman & Trotter (1965). 
** 4-Thiouridine: Saenger & Scheit (1970). 
,, Model generated by COORD program: Bell, S. (1987). Private communication. 
~* 3',5'-Di-O-acetylthymidine: Wilson, Low, Tollin & Wilson (1984). 

Solution 
(height/height of 

next highest peak) 

1st (998/525) 
1st (999/396) 
1st (999/883) 
3rd (909/999) 
4th (792/999) 
2nd (918/999) 
1st (999/714) 

2rid (997/999) 
3rd (704/998) 
1st (999/694) 
1st (999/616) 
3rd (711/998) 

1st (999/614) 
2nd (973/999) 

Concluding remarks 

From the results of these tests, the accuracy of the 
models obtained from the PFRF tends to be -< 10 ° in 
Op, which is quite adequate for provision of useful 
information to Patterson search procedures. 

Obviously it is rather disappointing that the func- 
tion does not produce exactly the correct Op orienta- 
tion in every case as the highest value, but when one 
considers the size of  the models being oriented the 
performance of the function must be regarded as 
reasonably impressive. 

For the crystallographer who has recourse to 
Patterson methods for difficult structures for either 
structural solution or to give a model for ab initio 
provision of information to direct methods, every 
expansion of the search model is important. Even in 
the worst cases, when the PFRF merely reduces the 
possible values of a degree of freedom to just a few 
small regions, this information will significantly 
reduce the number of  possible models to be tried, 
and hence should assist in structural solution. In the 
best cases, of  course, the model available is imhaedi- 
ately expanded and the probability of a solution being 
achieved increases concomitantly. 

The a u t h o r  t h a n k s  D r  P. T o l l i n  o f  the U n i v e r s i t y  
o f  D u n d e e  for d i scuss ions .  All  c a l c u l a t i o n s  w e r e  c a r -  

r i e d  o u t  o n  a V A X  8 6 0 0  in  t h e  N e u t r o n  D i v i s i o n  o f  

the Rutherford A p p l e t o n  L a b o r a t o r y .  
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